高考文科數(shù)學(xué)新課標(biāo)Ⅱ卷(含答案)

編輯: 逍遙路 關(guān)鍵詞: 高三 來源: 高中學(xué)習(xí)網(wǎng)


絕密★啟用前
普通高等學(xué)校招生全國統(tǒng)一考試(新課標(biāo)Ⅱ卷)
文科數(shù)學(xué)
注意事項(xiàng):
1. 本試卷分第Ⅰ卷()和第Ⅱ卷(非)兩部分。答卷前考生將自己的姓名、準(zhǔn)考證號填寫在答題卡上。
2. 回答第Ⅰ卷時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號框涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號框。寫在本試卷上無效。
3. 答第Ⅱ卷時(shí),將答案寫在答題卡上,寫在本試卷上無效。
4. 考試結(jié)束,將試題卷和答題卡一并交回。

第Ⅰ卷
一、選擇題:本大題共12小題。每小題5分,在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合要求的。
(1)已知集合={x-3<X<1},N={-3,-2,-1,0,1},則∩N=(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1 }
(2) =
(A)2 (B)2(C) (D)1
(3)設(shè)x,y滿足約束條件 ,則z=2x-3y的最小值是
(A) (B)-6(C) (D)-
(4)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b=2,B= ,C= ,則△ABC的面積為
(A)2 +2(B) (C)2 (D) -1
(5)設(shè)橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,P是C上的點(diǎn)PF2⊥F1F2,∠PF1F2=30。,則C的離心率為
(A) (B) (C) (D)
(6)已知sin2α= ,則cos2(α+ )=
(A) (B) (C) (D)
(7)執(zhí)行右面的程序框圖,如果輸入的N=4,那么輸出的S=

(A)1
(B)1+
(C)1+ + + +
(D)1+ + + +

(8)設(shè)a=log32,b=log52,c=log23,則
(A)a>c>b (B) b>c>a(C)c>b>a(D)c>a>b
(9)一個(gè)四面體的頂點(diǎn)在點(diǎn)間直角坐系O-xyz中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的正視圖時(shí),以zOx平面為投影面,則得到的正視圖可為

(A)(B)(C)(D)

( 10)設(shè)拋物線C:y2=4x的焦點(diǎn)為F,直線L過F且與C交于A, B兩點(diǎn).若AF=3BF,則L的方程為
(A)y=x-1或y=-x+1 (B)y= (X-1)或y=- (x-1)
(C)y= (x-1)或y=- (x-1) (D)y= (x-1)或y=- (x-1)
(11)已知函數(shù)f(x)=x3+ax2+bx+c ,下列結(jié)論中錯(cuò)誤的是
(A)
(B)函數(shù)y=f(x)的圖像是中心對稱圖形
(C)若x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,x0)單調(diào)遞減
(D)若x0是f(x)的極值點(diǎn),則f’( x0)=0
(12)若存在正數(shù)x使2x(x-a)<1成立,則a 的取值范圍是
(A)(-∞,+∞) (B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)
第Ⅱ卷
本卷包括必考題和選考題兩部分。第13題-第21題為必考題,每個(gè)試題考生都必須作答。第22題-第24題為選考題,考生根據(jù)要求作答。
二.題:本大題共4小題,每小題5分。
(13)從1,2,3,4,5中任意取出兩個(gè)不同的數(shù),其和為5的概率是________.
(14)已知正方形ABCD的邊長為2,E為CD的 中點(diǎn),則 =________.
(15)已知正四棱錐O-ABCD的體積為 ,底面邊長為 ,則以O(shè)為球心,OA為半徑的球的表面積為________.
(16)函數(shù) 的圖像向右平移 個(gè)單位后,與函數(shù)y=sin(2x+ )的圖像重合,則 =___________.
三.解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟。
(17)(本小題滿分12分)
已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列。
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求a1+a4+a7+…+a3n-2.

(18)(本小題滿分12分)
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(1)證明: BC1//平面A1CD;
(2)設(shè)AA1= AC=CB=2,AB= ,求三棱錐C一A1DE的體積.

(19)(本小題滿分12分)
經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出It該產(chǎn)品獲利潤500元,未售
出的產(chǎn)品,每It虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個(gè)銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.以X(單位:t≤100≤X≤150)表示下一個(gè)銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將T表示為X的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于57000元的概率.

(20) (本小題滿分12分)
在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2 ,在Y軸上截得線
段長為2 .
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點(diǎn)到直線y=x的距離為 ,求圓P的方程.

(21)(本小題滿分12分)
己知函數(shù)f(X) = x2e-x
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線y = f(x)的切線l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.

請從下面所給的22,23,24三題中選定一題作答.并用2B鉛筆在答題卡上將所選題目對應(yīng)的題號方框涂黑,按所涂題號進(jìn)行評分;不涂、多涂均按所答第一題評分;多答按所答第一題評分。
(22) (本小題滿分10分)選修4-1:幾何證明選講
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D, E,F(xiàn)分別為弦AB與弦AC上的點(diǎn),且BC•AE=DC•AF,B, E, F,C四點(diǎn)共圓。

(I)證明:CA是△ABC外接圓的直徑;
(II)若DB=BE=EA.求過B, E, F,C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
(23)(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知?jiǎng)狱c(diǎn)P. Q都在曲線C: (t為參數(shù))上,對應(yīng)參數(shù)分別為t=a與t=2a(0<a<2π),為PQ的中點(diǎn)。
(I)求的軌跡的今數(shù)方程:
(Ⅱ)將到坐標(biāo)原點(diǎn)的距離d表示為a的26數(shù),并判斷的軌跡是否過坐標(biāo)原點(diǎn).
(24)(本小題滿分10分)選修4-5:不等式選講
設(shè)a,b, c均為正數(shù),且a+b+c=1。證明:
(Ⅰ)ab+bc+ca≤ ;
(Ⅱ) + ≥1。




本文來自:逍遙右腦記憶 http://simonabridal.com/gaosan/744772.html

相關(guān)閱讀:高三數(shù)學(xué)練習(xí)題及答案:簡單的線性規(guī)劃問題