【導(dǎo)語】以下是逍遙右腦為大家推薦的有關(guān)高三數(shù)學(xué)練習(xí)題:簡單的線性規(guī)劃問題,如果覺得很不錯(cuò),歡迎點(diǎn)評(píng)和分享~感謝你的閱讀與支持!
一、選擇題
1.z=x-y在2x-y+1≥0x-2y-1≤0x+y≤1的線性約束條件下,取得最大值的可行解為()
A.(0,1)B.(-1,-1)
C.(1,0)D.(12,12)
解析:選C.可以驗(yàn)證這四個(gè)點(diǎn)均是可行解,當(dāng)x=0,y=1時(shí),z=-1;當(dāng)x=-1,y=-1時(shí),z=0;當(dāng)x=1,y=0時(shí),z=1;當(dāng)x=12,y=12時(shí),z=0.排除A,B,D.
2.(2010年高考浙江卷)若實(shí)數(shù)x,y滿足不等式組x+3y-3≥0,2x-y-3≤0,x-y+1≥0,則x+y的最大值為()
A.9B.157
C.1D.715
解析:選A.畫出可行域如圖:
令z=x+y,可變?yōu)閥=-x+z,
作出目標(biāo)函數(shù)線,平移目標(biāo)函數(shù)線,顯然過點(diǎn)A時(shí)z最大.
由2x-y-3=0,x-y+1=0,得A(4,5),∴zmax=4+5=9.
3.在△ABC中,三頂點(diǎn)分別為A(2,4),B(-1,2),C(1,0),點(diǎn)P(x,y)在△ABC內(nèi)部及其邊界上運(yùn)動(dòng),則m=y-x的取值范圍為()
A.[1,3]B.[-3,1]
C.[-1,3]D.[-3,-1]
解析:選C.直線m=y-x的斜率k1=1≥kAB=23,且k1=1
∴直線經(jīng)過C時(shí)m最小,為-1,
經(jīng)過B時(shí)m最大,為3.
4.已知點(diǎn)P(x,y)在不等式組x-2≤0y-1≤0x+2y-2≥0表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則z=x-y的取值范圍是()
A.[-2,-1]B.[-2,1]
C.[-1,2]D.[1,2]
解析:選C.先畫出滿足約束條件的可行域,如圖陰影部分,
∵z=x-y,∴y=x-z.
由圖知截距-z的范圍為[-2,1],∴z的范圍為[-1,2].
5.設(shè)動(dòng)點(diǎn)坐標(biāo)(x,y)滿足x-y+1x+y-4≥0,x≥3,y≥1.則x2+y2的最小值為()
A.5B.10
C.172D.10
解析:選D.畫出不等式組所對(duì)應(yīng)的平面區(qū)域,由圖可知當(dāng)x=3,y=1時(shí),x2+y2的最小值為10.
6.(2009年高考四川卷)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元、每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過13噸、B原料不超過18噸,那么該企業(yè)可獲得的最大利潤是()www.xkb1.com
A.12萬元B.20萬元
C.25萬元D.27萬元
解析:選D.設(shè)生產(chǎn)甲產(chǎn)品x噸、乙產(chǎn)品y噸,則獲得的利潤為z=5x+3y.
由題意得
x≥0,y≥0,3x+y≤13,2x+3y≤18,可行域如圖陰影所示.
由圖可知當(dāng)x、y在A點(diǎn)取值時(shí),z取得最大值,此時(shí)x=3,y=4,z=5×3+3×4=27(萬元).
本文來自:逍遙右腦記憶 http://simonabridal.com/gaosan/1147732.html
相關(guān)閱讀:內(nèi)蒙古包頭三十三中屆高三上學(xué)期期中2考試數(shù)學(xué)(理)試題Word版