【導(dǎo)語(yǔ)】高考競(jìng)爭(zhēng)異常激烈,千軍萬(wàn)馬爭(zhēng)過(guò)獨(dú)木橋,秋天到了,而你正以凌厲的步伐邁進(jìn)這段特別的歲月中。這是一段青澀而又平淡的日子,每個(gè)人都隱身于高考,而平淡之中的張力卻只有真正的勇士才可以破譯。為了助你一臂之力,逍遙右腦為你精心準(zhǔn)備了《高三下冊(cè)數(shù)學(xué)文科期中試卷及答案》助你金榜題名!
第I卷(選擇題部分共50分)
一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1.設(shè)集合=
A.B.C.D.
2.已知i為虛數(shù)單位,若復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a的值是
A.B.C.2D.-2
3.設(shè),則“a=l”是“函數(shù)為偶函數(shù)”的
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
4.執(zhí)行如圖所示的程序框圖,則輸出的s值是
A.-1
B.
C.
D.4
5.為三條不重合的直線,為三個(gè)不重合的平面,給出下列五個(gè)命題:
、佗冖
、堍。其正確命題的個(gè)數(shù)是
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
6.已知D是由不等式組所確定的平面區(qū)域,則圓在區(qū)域D內(nèi)的弧長(zhǎng)為
A.B.C.D.
7.已知某四棱錐的三視圖(單位:cm)如圖所示,
則該四棱錐的體積是
A.B.
C.D.
8.某次數(shù)學(xué)測(cè)試中,學(xué)號(hào)為i(i=1,2,3)的三位學(xué)生的考試成績(jī)則滿(mǎn)足的學(xué)生成績(jī)情況的概率是
A.B.C.D.
9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若=
A.B.C.D.
10.已知點(diǎn)F1,F(xiàn)2分別是橢圓為C:的左、右焦點(diǎn),過(guò)點(diǎn)作x軸的垂線交橢圓C的上半部分于點(diǎn)P,過(guò)點(diǎn)F2作直線PF2的垂線交直線于點(diǎn)Q,若直線PQ與雙曲線的一條漸近線平行,則橢圓的離心率為
A.B.C.D.
第Ⅱ卷(非選擇題部分共100分)
二、填空題:本大題共7小題,每小題4分,共28分.
11.函數(shù)的零點(diǎn)有個(gè).
12.設(shè)樣本的平均數(shù)為,樣本的平均數(shù)為,若樣本的平均數(shù)為.
13.已知數(shù)列為等差數(shù)列,則=.
14.△ABC外接圓的半徑為1,圓心為O,且,則的值是.
15.過(guò)直線2x—y+3=0上點(diǎn)M作圓(x-2)2+y2=5的兩條切線,若這兩條切線的夾角為90°,則點(diǎn)M的橫坐標(biāo)是.
16.設(shè)函數(shù),則實(shí)數(shù)a的取值范圍是。
17.已知三個(gè)正數(shù)a,b,c滿(mǎn)足a-b-c=0,a+bc-l=0,則a的最小值是.
三、解答題:本大題共5小題,共72分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
18.(本小題滿(mǎn)分14分)已知函數(shù)(其中)的最小正周期為,值為2.
(I)求A,的值;
(II)設(shè)的值.
19.(本小題滿(mǎn)分14分)在三棱柱ABC—A1B1C1中,AB=AC=AA1=2,平面ABC1⊥平面AA1C1C,∠AA1C1=∠BAC1=60°,設(shè)AC1與AC相交于點(diǎn)O,如圖.
(I)求證:BO⊥平面AA1C1C;
(Ⅱ)求二面角B1—AC1—A1的大小。
20.(本小題滿(mǎn)分15分),已知數(shù)列滿(mǎn)足:a1=1,,設(shè)
(I)求,并證明:;
(II)①證明:數(shù)列為等比數(shù)列;
、谌舫傻缺葦(shù)列,求正整數(shù)k的值.
21.(本小題滿(mǎn)分15分)已知函數(shù)
(I)若1和2是函數(shù)h(x)的兩個(gè)極值點(diǎn),求a,b的值;
(II)當(dāng)時(shí),若對(duì)任意兩個(gè)不相等的實(shí)數(shù),
都有成立,求b的值.
22.(本小題滿(mǎn)分14分)已知F為拋物線C1:的焦點(diǎn),若過(guò)焦點(diǎn)F的直線l交C1于A,B兩點(diǎn),使拋物線C1在點(diǎn)A,B處的兩條切線的交點(diǎn)M恰好在圓C2:x2+y2=8上.
(I)當(dāng)p=2時(shí),求點(diǎn)M的坐標(biāo);
(II)求△MAB面積的最小值及取得最小值時(shí)的拋物線C1的方程.
本文來(lái)自:逍遙右腦記憶 http://simonabridal.com/gaosan/1162437.html
相關(guān)閱讀:2019高三上冊(cè)數(shù)學(xué)測(cè)試題[1]