對稱問題是高中數(shù)學的重要內(nèi)容之一,在高考數(shù)學試題中常出現(xiàn)一些構思新穎解法靈活的對稱問題,為使對稱問題的知識系統(tǒng)化,本文特作以下歸納。
一、點關于已知點或已知直線對稱點問題
1、設點P(x,y)關于點(a,b)對稱點為P′(x′,y′),
x′=2a-x
由中點坐標公式可得:y′=2b-y
2、點P(x,y)關于直線L:Ax+By+C=O的對稱點為
x′=x-(Ax+By+C)
P′(x′,y′)則
y′=y-(AX+BY+C)
事實上:∵PP′⊥L及PP′的中點在直線L上,可得:Ax′+By′=-Ax-By-2C
解此方程組可得結論。
(- )=-1(B≠0)
特別地,點P(x,y)關于
1、x軸和y軸的對稱點分別為(x,-y)和(-x,y)
2、直線x=a和y=a的對標點分別為(2a-x,y)和(x,2a-y)
3、直線y=x和y=-x的對稱點分別為(y,x)和(-y,-x)
例1 光線從A(3,4)發(fā)出后經(jīng)過直線x-2y=0反射,再經(jīng)過y軸反射,反射光線經(jīng)過點B(1,5),求射入y軸后的反射線所在的直線方程。
解:如圖,由公式可求得A關于直線x-2y=0的對稱點
A′(5,0),B關于y軸對稱點B′為(-1,5),直線A′B′的方程為5x+6y-25=0
`C(0, )
`直線BC的方程為:5x-6y+25=0二、曲線關于已知點或已知直線的對稱曲線問題
二、曲線關于已知點或已知直線的對稱曲線問題
求已知曲線F(x,y)=0關于已知點或已知直線的對稱曲線方程時,只須將曲線F(x,y)=O上任意一點(x,y)關于已知點或已知直線的對稱點的坐標替換方程F(x,y)=0中相應的作稱即得,由此我們得出以下結論。
1、曲線F(x,y)=0關于點(a,b)的對稱曲線的方程是F(2a-x,2b-y)=0
2、曲線F(x,y)=0關于直線Ax+By+C=0對稱的曲線方程是F(x-(Ax+By+C),y-(Ax+By+C))=0
特別地,曲線F(x,y)=0關于
(1)x軸和y軸對稱的曲線方程分別是F(x,-y)和F(-x,y)=0
(2)關于直線x=a和y=a對稱的曲線方程分別是F(2a-x,y)=0和F(x,2a-y)=0
(3)關于直線y=x和y=-x對稱的曲線方程分別是F(y,x)=0和F(-y,-x)=0
除此以外還有以下兩個結論:對函數(shù)y=f(x)的圖象而言,去掉y軸左邊圖象,保留y軸右邊的圖象,并作關于y軸的對稱圖象得到y(tǒng)=f(x)的圖象;保留x軸上方圖象,將x軸下方圖象翻折上去得到y(tǒng)=f(x)的圖象。
例2(全國高考試題)設曲線C的方程是y=x3-x。將C沿x軸y軸正向分別平行移動t,s單位長度后得曲線C1:
本文來自:逍遙右腦記憶 http://www.simonabridal.com/gaozhong/131948.html
相關閱讀:高中數(shù)學輔導:幾何中求參數(shù)取值范圍有哪些方法