甲、乙、丙、丁、戊五位同學(xué)在一次數(shù)學(xué)競(jìng)賽中得了前五名。發(fā)獎(jiǎng)前老師要他們猜一猜各人所得的名次。甲猜:乙第三名,丙第五名;乙猜:戊第四名,丁第五名;丙猜測(cè):甲第一名,戊第四名;丁猜:丙第一名;戊猜:甲第三名,丁第四名。老師說(shuō):每個(gè)名次都有人猜對(duì)了。試問(wèn):獲得第四名的是誰(shuí)?
讀完題目,你一定會(huì)感到頭緒太多,無(wú)從下手。為了理出頭緒,讓我們把五位同學(xué)猜測(cè)的結(jié)果用表格列出
第一名
第二名
第三名
第四名
第五名 甲 猜
乙
丙 乙 猜
戊
丁 丙 猜
甲
戊
丁 猜
丙
乙
戊 猜
甲
丁
這時(shí),注意到老師所說(shuō)的“每個(gè)名次都有人猜對(duì)!蔽覀儚谋砀裰幸馔獾陌l(fā)現(xiàn):只有丁猜的“乙是第二名”這個(gè)結(jié)果是唯一的,立即可知乙一定是第二名。乙是第二名,就不會(huì)是第三名,所以甲一定是第三名。從而,甲不是第一名,則丙一定是第一名。由此又推得,丙不是第五名,丁是第五名。因?yàn)槎〔豢赡苁堑谒拿,故第四名只能是戊?br>
當(dāng)然,列出表格以后,根據(jù)老師所說(shuō)的話,也可以從第四名是戊或丁入手。經(jīng)分析,如果丁是第四名,則將引出矛盾,從而確定只能是戊獲得第四名。
再舉一個(gè)例子:
某次數(shù)學(xué)競(jìng)賽,共有10道選擇題。評(píng)分的辦法是:每一道題,答對(duì)得4分,不答得0分,答錯(cuò)得-1分。那么,這次競(jìng)賽至多可能出現(xiàn)多少種成績(jī)。
做錯(cuò)題數(shù)
做對(duì)題數(shù)
0
1
2
3
4
5
6
7
8
9
10 10
-10
9
-9
-5
8
-8
-4
0
7
-7
-3
1
5
6
-6
-2
2
6
0
5
-5
-1
3
7
11
15
4
-4
0
4
8
12
16
20
3
-3
1
5
9
13
17
21
25
無(wú)
無(wú)
無(wú) 2
-2
2
6
10
14
18
22
26
30
無(wú) 1
-1
3
7
11
15
19
23
27
31
35
無(wú) 0
0
4
8
12
16
20
24
28
32
36
40
解:我們還是根據(jù)題目的條件,列出一個(gè)得分表。
從表中立即可以看到,自-10分到-40分的五十一種分?jǐn)?shù)中,不能能出現(xiàn)29、33、34、37、38、39六種分?jǐn)?shù)。因此,這次競(jìng)賽的得分至多可能出現(xiàn)45種不同的成績(jī)。
由此可知,有些問(wèn)題,各種量之間關(guān)系復(fù)雜,并列出現(xiàn)的情況多,常會(huì)使你覺(jué)得難以入手。解題時(shí),如果我們能選用合適的方法(包括畫圖、列表等),把有關(guān)的數(shù)據(jù)(或相互之間的關(guān)系)整理出來(lái),則量與量之間的關(guān)系立刻躍然紙上,問(wèn)題也就迎刃而解了。
本文來(lái)自:逍遙右腦記憶 http://www.simonabridal.com/gaozhong/115260.html
相關(guān)閱讀:高考備考:考場(chǎng)上數(shù)學(xué)增分的技巧