進(jìn)入高中后,內(nèi)容一下子增加了很多,每堂課上需要理解和消化的知識(shí)點(diǎn)也非常多,學(xué)習(xí)起來感覺很難。很多同學(xué)很難迅速適應(yīng)從初中到高中的轉(zhuǎn)變。高中的數(shù)學(xué)知識(shí),要學(xué)會(huì)“探究式”的學(xué)習(xí)。
一、計(jì)算能力。高中涉及到更多的內(nèi)容,而計(jì)算是一項(xiàng)基本技能,對(duì)于初中時(shí)候的有理數(shù)的運(yùn)算、二次根式的運(yùn)算、實(shí)數(shù)的運(yùn)算、整式和分式運(yùn)算,代數(shù)式的變形等方面如果還存在問題,應(yīng)該把部分再好好復(fù)習(xí)鞏固一下。若計(jì)算頻頻出現(xiàn)問題,會(huì)成為高中學(xué)習(xí)的一個(gè)巨大的絆腳石。
二、反思總結(jié)。很多同學(xué)進(jìn)入高中后都會(huì)在學(xué)法上遇到很大的困擾。因?yàn)楦咧兄R(shí)多,授課時(shí)間短,難度大,所以初中時(shí)候的一些學(xué)習(xí)方法在高中就不太適用了。對(duì)于高中的知識(shí),不能認(rèn)為“做題多了自然就會(huì)了”,因?yàn)榈搅烁咧袥]有那么多時(shí)間來做題,因此一定要找到一種更有效地學(xué)習(xí)方法,那就是要在每次學(xué)習(xí)過后進(jìn)行總結(jié)和反思。總結(jié)知識(shí)點(diǎn)之間的聯(lián)系和區(qū)別,反思一下知識(shí)更深層的本質(zhì)。三、預(yù)習(xí)高一的知識(shí)。新課程標(biāo)準(zhǔn)的高一第一學(xué)期一般是講必修1和必修4兩本。目前高中采取模塊教學(xué),每個(gè)學(xué)期2個(gè)模塊。
必修1的主要內(nèi)容是三部分:
集合:數(shù)學(xué)中最基礎(chǔ),最通用的數(shù)學(xué)語言。貫穿整個(gè)高中以及現(xiàn)代數(shù)學(xué)都是以集合語言為基礎(chǔ)的。一定要學(xué)明白了。
函數(shù):通過初中對(duì)具體函數(shù)的學(xué)習(xí),在其基礎(chǔ)上研究任意函數(shù)研究其性質(zhì),如單調(diào)性,奇偶性,對(duì)稱性,周期性等。這一部分相對(duì)有一定的難度,而且與初中的聯(lián)系比較緊;境醯群瘮(shù):指數(shù)和對(duì)數(shù)的運(yùn)算以及利用前面學(xué)到的函數(shù)性質(zhì)研究指數(shù)函數(shù),對(duì)數(shù)函數(shù)和冪函數(shù)。這部分知識(shí)有新的計(jì)算,并且應(yīng)用前面的函數(shù)性質(zhì)學(xué)習(xí)新的函數(shù)。
必修4的主要內(nèi)容也分為三部分:
三角函數(shù):對(duì)于初中的角的概念進(jìn)行擴(kuò)充,涉及到三角函數(shù)的運(yùn)算以及三角函數(shù)的性質(zhì)。
平面向量:這是數(shù)學(xué)里面一種新的常用的工具,通過向量的方法可以方便的解決很多三角函數(shù)的問題。這種方法與平面直角坐標(biāo)系的聯(lián)系比較多,但與函數(shù)有所不同,應(yīng)注意區(qū)別與聯(lián)系。
三角恒等變換:這部分主要是三角的運(yùn)算,屬于公式很多,運(yùn)算量也比較大的內(nèi)容。統(tǒng)觀上述高一第一學(xué)期的內(nèi)容可見知識(shí)非常多,而且這些知識(shí)在高考中的比重也比較大,因此若在高一一開始不能學(xué)好,對(duì)于后面的學(xué)習(xí)是會(huì)有一定影響的。因此,要考慮到初高中知識(shí)的差異,對(duì)自己的學(xué)法進(jìn)行改進(jìn),最后要適當(dāng)?shù)念A(yù)習(xí)一下新高一的內(nèi)容,以期很快的適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
本文來自:逍遙右腦記憶 http://simonabridal.com/gaoyi/840027.html
相關(guān)閱讀:高一新生應(yīng)掌握的數(shù)學(xué)學(xué)習(xí)方法